Microstructural Characterization Of Additively Manufactured U6Nb During Heat Treatment and Deformation

B. Clausen¹, D. W. Brown¹, T. A. Sisneros¹, S. C. Vogel¹, A. Wu²

Los Alamos National Lab
Lawrence Livermore National Lab

Acknowledge support from NNSA and DOE BES support of Lujan Neutron Scattering Center

LA-UR-15-28526

Advanced Qualification of New Materials Requires a Detailed Understanding of the Linkage Between Processing, Microstructure and

UNb is Complicated

The UNb Alloys are Shape Memory Alloys

Vandermeer, Ogle, Northcutt, Met Trans A, Vol 12, 1981

D.W. Brown, M.A.M. Bourke, P.S. Dunn, R.D. Field, M.G. Stout, D.J. Thoma, Met. Trans. A, 32 (2001) 2219-2228.

D.W. Brown, M.A.M. Bourke, R.D. Field, W.L. Hults, D.F. Teter, D.J. Thoma, S.C. Vogel, Mat Sci EnglA, 421 (2006) 15-21. **Structure of AM'ed U6Nb Differs From That Conventionally Produced**

Conventionally Produced Material

Additively Manufactured Material

- Something in the microstructure is stabilizing the γ_0 phase. It is enhanced after heat treating.
 - Other metal impurities?
 - Interstitial oxygen?
 - Oxygen binding with U, effectively increasing Nb concentration?

Heat Treating of U6Nb Completed In-Situ on SMARTS

How Does the Microstructure Evolve During Heat Treatment?

- Everything we can monitor, chemistry, stress, texture and dislocation density is constant during hold at 1000C.
- Not sensitive to grain growth.
- Conclude that microstructural changes happen during heating.
- We will have time this spring at APS to monitor microstructural evolution during heat up.

Development of U6Nb Diffraction Pattern During Tensile Deformation

Traditional U6Nb Deforms By Multiple Mechanisms

AM'ed U6Nb Also Has Sigmoidal Flow Curve

Evolution of Diffraction Pattern is Distinct From Conventional U6Nb

Different initial phase excludes the 2 primary deformation modes of conventional U6Nb.

Conclusions

• We have used neutron diffraction to monitor the microstructural evolution of conventional and AM'ed U6Nb under different conditions.

– As manufactured and heat treated material do not have same crystal structure as wrought U6Nb (α '').

-As-manufactured: 2 phase α '' and γ_0 .

– Heat treated: γ_0 .

- We observe no microstructural changes during 10hrs hold at 1000C.

- Deformation induced transformation to the α '' phase.
- Neutron diffraction limited to processes with time scales of minutes-10's of minutes.
- Current capabilities at APS (1ID) will allow us to measure similar quantities with ~40µs integration time (4 frames).
 - Changes the scale of processes we can study, e.g. microstructural development following deposition.
- MaRIE capabilities will reduce this integration time to <ns, allowing us to study the initial solidification of the printed metal.
 - e.g. solute segregation during solidification.
 - Might need MHz data collection rates.

Variation of Lattice Parameter With [Nb]

Stress Induced a'' Looks Like U6Nb

Deformation of AM Material is Reminiscent of Y12 Material

• Oil Quench

How Does the Microstructure Evolve During Heat Treatment?

